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Lattice Boltzmann method on composite grids

Ching-Long Lin* and Yong G. Lai†

Department of Mechanical Engineering and Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa 52242
~Received 10 March 2000!

A composite block-structured lattice Boltzmann method is proposed for the simulation of two-dimensional
incompressible fluid flows. The grid structure is composed of a coarse base grid and one or several fine grid~s!.
The former covers the entire physical domain; the latter are placed at regions where local grid refinement is
desirable. The simulation is first carried out on the base grid level at a smaller relaxation time, allowing a rapid
propagation of boundary information throughout the entire domain. Thus large-scale flow features can be
resolved efficiently at a relatively low cost. At a later time, fine grid variables are initiated. The dependent
variables on both grid levels are, then, advanced in time simultaneously with the fine grid boundary conditions
obtained from the base grid solution at the grid interface. As a demonstration, the lid-driven cavity flow is
selected for study. The results show good agreement with benchmark numerical data and those calculated from
the finite-volumeU2RANS model. The proposed method is able to produce accurate solutions on fine grids, with
a considerable saving in CPU time.

PACS number~s!: 47.10.1g, 47.11.1j, 02.70.2c
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I. INTRODUCTION

The lattice Boltzmann equation~LBE! method has re-
ceived great attention from the community of computatio
fluid dynamics because of its capability of simulating mu
phase flow, interfacial flow phenomena, and flow throu
porous media, among others@1#. Several issues, howeve
remain to be addressed. One of them is the extension o
LBE method from regular grids to irregular grids. With i
regular grids, grid refinement can be applied to import
flow regions, and flow structures along curved bounda
can be better resolved. Several efforts have been mad
overcome this issue, and significant progresses have
achieved in recent years.

For instance, He and Luo@2,3# demonstrated that the LBE
is a discretized form of the continuous Boltzmann equati
leading to the important concept that the discretization
physical space is not coupled to the discretization of mom
tum space. An immediate consequence is that arbitrary g
can be used in the LBE method. Based on the above con
He et al. @4# proposed an interpolation-supplemented LB
~ISLBE! method to simulate a two-dimensional channel flo
with sudden expansion on a nonuniform grid. Later, He a
Doolen @5,6# applied the ISLBE method to simulate vorte
shedding behind a circular cylinder on a curvilinear coor
nate system. This method adds a new interpolation step
tween the streaming and relaxation steps in the conventi
LBE method, and retains the locality property of the tw
steps. At the same time, Caoet al. @7# indicated that the LBE
method is a special finite-difference discretization of the
netic equation of the discrete velocity distribution functio
The implication is that by introducing other standard fini
difference discretization methods, the application of nonu
form grids and semi-implicit collision schemes to the co
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ventional LBE method is possible. On this basis, Mei a
Shyy @8# solved the LBE in a generalized body-fitted coo
dinate system, demonstrating that the LBE method is cap
of solving fluid flow problems in complex geometries. Th
finite-volume LBE~FVLBE! method was also proposed b
Succi et al. @9# for a simulation of fluid flows in complex
geometries. Xiet al. @10,11# proposed a cell-vertex FVLBE
method for simulation of two- and three-dimensional flow
No numerical diffusion resulted from their method.

The regular grid structure, however, tends to have a be
numerical stability property. Thus an alternative strategy
dealing with curved boundaries is to devise a boundary-fit
condition for nodes adjacent to these boundaries. Based
the work of Filippova and Ha¨nel @12#, Mei et al. @13# pro-
posed a second-order accurate treatment, which has
tested on several benchmark cases. Along this line
thought, the capability of local grid refinement has to
developed to make a simulation on regular lattice compu
tionally economical. Filippova and Ha¨nel @12# proposed a
local grid refinement method which allows two-way intera
tion at the post-collision stage after rescaling the discr
distribution functions on both grid levels. In this paper, w
propose a composite LBE method, which allows one-w
interaction at the post-streaming stage without rescaling
discrete distribution functions. The proposed method use
multigrid architecture. The coarse grid covers the en
physical domain, and is nested with one or several fi
grid~s! as in typical grid-nesting techniques, such as that
Sullivan et al. @14#. Different grid levels operate at differen
length and time scales. We will demonstrate that more ac
rate solutions are obtained on fine grids, with a considera
saving in CPU time.

The paper is organized as follows. In Sec. II, a tw
dimensional square lattice model is briefly reviewed. T
effect of characteristic length and time scales of the squ
lattice on numerical solutions and CPU time is discussed
Sec. III. In Sec. IV, a composite block-structured lattice a
a solution procedure are presented. The results are sh
2219 ©2000 The American Physical Society
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and discussed in Sec. V. Concluding remarks are given
Sec. VI.

II. SQUARE LATTICE MODEL

The Boltzmann equation with the Bhatnagar-Gross-Kro
~BGK! collision operator@15# reads

] f

]t
1eW•¹W f 52

1

t
~ f 2 f eq!, ~1!

FIG. 1. Two-dimensional square lattice model with a leng
scaledx.
in

k

where f is the single-particle distribution function,eW is the
microscopic velocity,¹W f is the gradient of the functionf, t
is the relaxation time due to collision, andf eq is the
Boltzmann-Maxwellian distribution function. Using the la
tice Boltzmann nine-bit model in two dimensions~Fig. 1!,
the above equation can be discretized as

f i~xW1eW idt,t1dt !5 f i~xW ,t !2
1

t
@ f i~xW ,t !2 f i

eq~xW ,t !#. ~2!

Here the right-hand side of the equation is known as
collision process, and the left-hand side as the streaming
cess. The discrete velocitieseW i are expressed as~refer to Fig.
1 for the direction represented by the subscripti )

eW i5H c~0,0!, i 50

c~cosu i ,sinu i !, u i5~ i 21!p/4, i 51,3,5,7

A2c~cosu i ,sinu i !, u i5~ i 21!p/4, i 52,4,6,8,
~3!

wherec[dx/dt, dx is the adjustable lattice size, anddt the
time step. The equilibrium distribution functionf i

eq is de-
fined as

f i
eq5wirF113

~eW i•uW !

c2
1

9

2

~eW i•uW !2

c4
2

3

2

~uW •uW !

c2 G , ~4!

with the weightsw054/9, w15w35w55w751/9, andw2
5w45w65w851/36 @2#. The macroscopic densityr and
velocity vectoruW are related to the distribution function by
d

FIG. 2. Contours of the stream

function at a time 20 000 obtaine
with grid sizes~a! 2573257, ~b!
1293129, ~c! 65365, and~d! 33
333.
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(
i 50

8

f i5r, (
i 51

8

f ieW i5ruW . ~5!

Using the Chapman-Enskog expansion@17,18#, the above
equations can recover the Navier-Stokes equations to the
ond order of accuracy, with the kinematic viscosityn given
by

n5
2t21

6

dx2

dt
~6!

The pressure can be calculated fromp5cs
2r, with the speed

of sound cs5c/A3. The above two-dimensional nine-b
square lattice model is adopted in this study.

III. EFFECT OF LATTICE LENGTH AND TIME SCALES

In the classical BGK model, the square lattice length (dx)
and time (dt) scales are taken to be unity. For instance, F
2~a! exhibits contours of the stream function for a develop
lid-driven cavity flow at a Reynolds number Re51000 and
time 20 000~i.e. 20 000 iterations!; the grid points are 257
3257, with dx5dt51. The lid velocity at the top wall is

FIG. 3. Normalized average errors for grids of 65365, 129
3129, and 2573257 shown in Fig. 2, and for casesa, b, and c
listed in Table I. The solid line is the ideal slope 1.4.
ec-

.

0.1, which is the same value as used by Houet al. @17# on a
2563256 grid. Note that the flow is not fully developed i
order to illustrate the time accurate aspect of the method

By increasing the lattice characteristic scales todx5dt
52, the number of iterations required to reach the same t
as above is reduced by a factor of 2. In addition, since o
1293129 grid points withdx52 are needed to cover th
same physical domain, the number of grid points is redu
by a factor of 4~in three dimensions, the factor becomes!,
and so are the numbers of streaming and collision operat
per time step. Figure 2~b! shows contours of stream functio
for this grid at time 20 000, using the same contour levels
before. Note that this case requires only 10 000 iterati
since dt52. Both grids produce almost the same resu
With dx5dt54, on a 65365 grid, most of large- and small
scale flow structures are still discernible, as shown in F
2~c!. On a very coarse lattice 33333, Fig. 2~d! shows that
large-scale flow features are captured, while the weak sm
vortex at the lower right corner is not resolved. The latti
model fails to represent macroscopic motions of a flu
whose characteristic length scale is of the order of the lat
unit size. That is, the continuum of fluid motions holds on
when the hydrodynamic length scale in a flow is much lar
than the lattice scaledx. In Fig. 2~d!, vortices exist on two
different scales, but the scale of the lattice unit is only sm
enough for the central vortex.

Two approaches can be applied to estimate the ove
order of accuracy of the method, when the exact solution
not available. One approach uses the following formula~Fer-
ziger and Peric´ @16#!, which requires numerical solutions o
three grid levels with grid spacingsdx, dx/2, anddx/4:

n'

lnF ( ufdx/22fdxu/N

( ufdx/42fdx/2u/N
G

ln 2
~7!

fdx represents any dependent variable, such as velocity c
ponentsu andv, with grid spacingdx. N is the number of
grid points, with whichf values are compared. Here we u
u and v data obtained with grids 65365, 1293129, and
2573257, which resolve the lower right corner vortex. Th
e
FIG. 4. Integration sequenc
of the composite grid.
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order of accuracy estimated isn51.4. With the assumption
of the 1.4-order convergence of the method, we can fur
estimate the average discretization errore for fdx/2 via Ri-
chardson extrapolation@16#. That is,

e'
( ufdx/22fdxu/N

2n21
. ~8!

The estimated error is further normalized using the form
e/((ufdx/2u/N1e), where the denominator represents t
estimated ‘‘exact’’ solution. Figure 3 shows the normaliz
average errors on three different grid levels. The aver
errors are 1.3%, 3.1%, and 8.9% of the exact solution
grids 2573257, 1293129, and 65365, respectively. They
closely follow the ideal slope 1.4.

The other approach adopted by Houet al. @17# uses a very
fine grid solution as the ‘‘exact’’ solution for the calculatio
of errors in other coarser grid solutions. To verify the abo
estimation using this approach, we repeat the simulation w
a very fine grid 5133513 anddx5dt50.5. Figure 3 shows
that the error curve generated by this approach nearly pa
lels the curve of an ideal slope 1.4, and almost overlaps
curve generated by the previous method. Therefore, by d
bling the grid spacing, the discretization error roughly
creases by a factor of 21.452.64. On the other hand, th
number of arithmetic operations is reduced by a factor of 8
two dimensions~16 in three dimensions!.

The above consideration has an immediate conseque
a considerable saving in CPU time can be achieved if coa
grids are used in regions where flow structures are smoot
not important. For instance, all the above cases are run
HP-UX 9000/785 workstations. The Fortran library routi
DTIME is used to record the elapsed execution time for e
case. The above four cases~with lattice sizes of 2573257,
1293129, 65365, and 33333) take 98.02, 4.961, 0.4643
and 0.0658 CPU seconds, respectively. Normalization
0.0658 yields 1490, 75, 7, and 1, respectively. It verifi
that an appreciable amount of CPU time can be saved
moderate loss of accuracy of numerical results.

In the above calculation, the use ofdx5dt gives a con-
stantc5dx/dt51, and, as a result, the same discrete velo
ties eW i @Eq. ~3!# and equilibrium distribution function@Eq.
~4!# are used for all of the above cases. Since kinem
viscosity n is determined by Reynolds number R
5UlidLlid /n, whereUlid and Llid are the lid velocity and
length,n remains constant for all cases. The only differen
er
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among these cases lies in the relaxation timet, which ap-
pears in Eqs.~2! and ~6!. With increasingdx and dt, the
relaxation timet decreases, leading to a larger change of i
for each collision step. An observation of interest is thatf i is
interchangeable after the streaming step among the
cases, in spite of their different characteristic scales and
curacy.

IV. COMPOSITE BLOCK-STRUCTURED LATTICE

With the above observation, it is possible to construc
composite block-structured lattice method so that accu
numerical solutions can be obtained at designated areas
much less CPU time. The objective of the composite latt
is to place lattices of smaller characteristic length and ti
scales at locations where fine-scale eddies exist, akin to
concept of grid nesting@14#. The grid structure is compose
of a coarse base grid and one or several fine grid~s!. The
former covers the entire physical domain; the latter cov
only subdomains. The characteristic length and time sc
(dx anddt) of the base grid are twice those of the fine gr

The integration sequence of the composite grid is illu
trated as in Fig. 4. Before timet3, flow structures on the
base grid level~denoted byG1) are solved at a faster rat
with a larger time stepdt. The simulation on the fine grid
~denoted byG2) starts at a later timet2 with a smaller time
stepdt/2. At time t2, the fine grid boundary conditions ar
obtained from the base grid solutions at timest1 and t3
through linear interpolation. Whereas at timet3, the fine grid
boundary conditions are provided by the base grid solutio
time t3 alone, because solutions on both grids are at
same time levels, and no interpolation in time is needed.

When the fine grid solution procedure is activated at ti

FIG. 5. Schematic of the intergrid communication.
grid
TABLE I. Simulation parameters. Casea is a single fine grid system. Caseb is a two-grid system. Case
c is a four-grid system. Cased is a two-grid system.G1 represents a base grid, andG2, G3, andG4
represent composite fine grids. (i , j ) designates the coordinates of the lower left corner of the composite
relative to theG1 grid. The Reynolds number for these cases is 1000.

Case G1 G2 G3 G4

Size Size (i , j ) Size (i , j ) Size (i , j )

a 2553255
b 1283128 2553137 (1,1)
c 1283128 57357 (1,1) 111399 (73,1) 1013101 (1,78)
d 46346 43337 (1,28)
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TABLE II. Locations and values of maximum and minimum stream functions for three vortices o
lid-driven cavity flow at a Reynolds number of 1000.

Case Primary vortex Lower left vortex Lower right vortex

cmax x/Llid y/Llid cmin x/Llid y/Llid cmin x/Llid y/Llid

Ghia et al. 0.1179 0.5313 0.5625 20.000231 0.0859 0.0781 20.00175 0.8594 0.1094

Hou et al. 0.1178 0.5333 0.5647 20.000222 0.0902 0.0784 20.00169 0.8667 0.1137

U2RANS 0.1171 0.5315 0.5669 20.000231 0.0866 0.0748 20.00173 0.8661 0.1102

Casea 0.1140 0.5315 0.5669 20.000201 0.0827 0.0787 20.00160 0.8622 0.1142

Caseb, G1 0.1140 0.5276 0.5669 20.000195 0.0866 0.0787 20.00158 0.8661 0.1181
Caseb, G2 20.000204 0.0827 0.0787 20.00171 0.8583 0.1142

Casec, G1 0.1140 0.5276 0.5669 20.000195 0.0866 0.0787 20.00158 0.8661 0.1181
Casec, G2 20.000239 0.0866 0.0827
Casec, G3 20.00176 0.8583 0.1142
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t2, f i values in this grid are initialized through the followin
two steps. The first step is to insert the time-averagedf i
values on the base grid into the lattice nodes that are c
mon to both grids, and are denoted by the open circles in
5. The second step is to use linear interpolation for the
culation of f i values at lattice nodes denoted by the gr
circles in Fig. 5. Note that the above initialization procedu
takes place at the post-streaming stage of the base gr
time t3. After the initialization step, only the fine gri
boundary conditions along the bold solid line in Fig. 5 a
required. They are obtained in the same fashion as abov

If node A in Fig. 5 is on the wall and the bounce-bac
boundary condition is applied, the interpolation off i values
for nodeB is not possible. A special treatment for assigni
values to fine grid nodes of this type is described belo
First, the average velocities at nodeB in Fig. 5 are calcu-
lated, through interpolation, by using the velocities at nodC
and by invoking the no-slip boundary condition at nodeA.
Then f i values are estimated using the equilibrium distrib
tion function @Eq. ~2!#.

V. RESULTS AND DISCUSSIONS

Simulation of a lid-driven cavity flow at a Reynolds num
ber 1000 on a single grid 2553255~casea in Table I! is first
-
g.
l-
y

at

.

.

-

carried out for later comparison. The grid size is chosen to
close to a 2563256 lattice used by Houet al. @17#. They
differ by one grid point in thex andy directions to allow grid
coarsening by a factor of 2 in our case. The same prob
with the same mesh is also calculated by theU2RANS finite-
volume code@19# for comparison. We will also compare ou
results with the benchmark numerical solutions of Ghiaet al.
@20#, who used a finite-difference stream-vorticity metho
The convergence criterion is taken as that the change of
maximum value of stream function for 10 000 consecut
iterations is less than 531025, similar to that of Houet al.
@17#. Thus, for casea, the number of iterations for conver
gence is 200 000.

At a Reynolds number of 1000, three vortices are gen
ated: one near the center of the domain, one at the lo
left corner, and one at the lower right corner. The ma
imum and minimum values of the stream functionc
associated with these vortices, and their locations,
listed in Table II. The maximum stream functioncmax for
casea is found at nearly the same location as others, an
only 2.5% smaller in magnitude. Since the normalized g
spacing is 1/254'0.004, the locations of the lower vortice
differ, if any, by only one grid point as compared with oth
cases.
FIG. 6. Mesh and solution for
caseb ~refer to Table I!. ~a! Grid
layout; only every eighth grid line
is displayed.~b! Contours of the
stream function on both grids.
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A. Two-grid system

For caseb in Table I, the fine gridG2 consists of 255
3137 grid points, and is placed at the lower half of t
domain, as shown in Fig. 6~a!. The vertical extent of the grid
is chosen to be slightly above the horizontal centerline,
lowing a comparison ofv velocity profile at the centerline on
both grids, and with the aforementioned numerical results
well. The contours of the stream function on both grids
shown in Fig. 6~b!. The contour lines exhibit a smooth tran
sition along the intergrid boundary, indicating that no u
physical solution occurs there. In addition, the contours
both grids almost overlap each other except in the vicinity
two lower corner vortices, where velocity magnitudes a
relatively small.

Figure 7 displays the normalizedu(y) andv(x) velocity
profiles along the centerlines on both grids together with
numerical solutions of Ghiaet al. @20# and theU2RANS code.
Clearly, these data are in excellent agreement. Given tha
horizontal centerline aty/Llid50.5 on theG2 grid is only
slightly below the upper boundary of theG2 grid, the inter-

FIG. 7. Velocity profilesu(y)/Ulid andv(x)/Ulid at the vertical
and horizontal centerlines~denoted by dashed lines! of the lid-
driven cavity at Re51000. The benchmark data of Ghiaet al. are
displayed for comparison.G1 andG2 stand for the coarse and fin
grids, respectively~refer to caseb in Table I!.
l-

s
e
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n
f
e

e

he

grid communication procedure described in Sec. IV prope
transfers the base grid information to the fine grid.

In Table II, the locations and stream functions of the ce
ters of three vortices for caseb are listed. TheG1 grid so-
lution is expected to contain more error, and predicts a re
tively lower cmin for the two lower vortices. On the othe
hand, theG2 grid solution produces more accuratecmin val-
ues than theG1 grid as compared with the results from Gh
et al. @20#, Hou et al. @17#, and theU2RANS model. By using
Richardson extrapolation@Eq. ~8!# and solutions from the
G1 andG2 grids, we are able to estimate the average e
in theG2 grid. This error is marked in Fig. 3, and its order
magnitude agrees well with the foregoing error analysis.
also use theG1 grid solution of this case along with the fin
grid solution of casea for an evaluation of the error of the
latter. The result~Fig. 3! shows that the error has the sam
order of magnitude as other fine grid cases. Thus theG2 grid
solution is more accurate than theG1 grid solution.

B. Four-grid system

Next we test a four-grid system, which is composed o
coarse base gridG1 and three fine gridsG2, G3, andG4
~refer to casec in Table I!. The grid layout is shown in Fig
8~a!. The G2 andG3 grids cover the lower left and righ
corner vortices, respectively; theG4 grid is placed at the
upper left corner. The contours of stream function at tim
200 000 for the four grids are displayed in Fig. 8~b!. These
contours almost collapse, except those near the lower co
vortices. A comparison of the lower left vortex in Table
shows that its location differs from theG2 solution of caseb
only by one grid point in thex and y directions. Itscmin
value is even closer to the results obtained from the conv
tional methods. The same feature is observed in the lo
right vortex. We further use Eq. 8 to estimate the avera
error associated with these three fine grids, and mark i
Fig. 3. The order of magnitude of the error is in good agr
ment with other fine grid solutions.

C. CPU time

Another interesting feature is the CPU time measured
the functionDTIME for casesa, b, and c. They are 1029,
130.9, and 309.3 CPU seconds, respectively. Note that
casesb andc, the timet3 ~refer to Fig. 4!, immediately after
initiating the fine grid solution procedure, is 160 000. It
.

FIG. 8. Mesh and solution for
casec ~refer to Table I!. ~a! Grid
layout; only every eighth grid line
is displayed.~b! Contours of the
stream function on all of the grids
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equivalent to 80 000 iterations withdt52 on theG1 grid.
This explains why a considerable saving of the CPU ti
can be achieved. Caseb is about eight times faster than ca
a, with the same accurate solutions at designated areas, w
casec is about three times faster. Casec consumes more
CPU time than caseb because more interpolation is in
volved.

D. Removal of the oscillatory solution

At high Reynolds numbers or with coarse grids, oscil
tory solutions may develop at the upper left corner of
cavity @17#. The objective of this section is to investiga
whether the proposed composite grid method is able to a
viate this problem. We simulate the same flow using a v
coarse gridG1, 46346, which is referred to as cased in
Table I. In this case, a fine gridG2 is nested at the upper le
corner. The contours of stream function for bothG1 andG2
grids are depicted in Fig. 9. The contours of stream funct

FIG. 9. Contours of the stream function. Cased: solid line,G1
46346; dashed line,G2 43337. Casea: dot-dashed line, fine grid
2553255.
e

ile

-
e

e-
y

n

for casea are also displayed in the same figure for compa
son. Figure 9 shows that the oscillation at the upper
corner is removed by the composite grid method.

VI. CONCLUSION

In this paper, we have presented a composite lattice B
zmann method, which allows local grid refinement on t
framework of a regular lattice. This method is based on
observation that discrete particle distribution functions
interchangeable among grids of different length and ti
scales at the post-streaming stage, if the ratio of length
time scales in these grids is kept constant. The accurac
the discrete distribution function on the base grid level see
to have little effect on the fine grid solution.

We first examine the overall order of accuracy of t
scheme and the discretization errors on grids of differ
length and time scales. The results show that the L
method has an order of accuracy of 1.4 for the lid-driv
cavity studied. A comparison of CPU time required for ea
case shows that a considerable saving in CPU time can
achieved if coarser grids are used in regions where fl
structures are smooth or not important.

The strategy of the proposed method is, first, to carry
a simulation on a coarse base grid. This allows a rapid pro
gation of information on boundaries throughout the ent
simulation domain, and captures large-scale eddy struct
effectively. Then the solution is mapped to the fine grid u
ing linear interpolation. Subsequently, the dependent v
ables on the base and fine grids are advanced in time with
fine grid boundary conditions obtained from the base g
solution through linear interpolation.

We have demonstrated that the proposed method can
duce more accurate solutions at designated regions neste
the fine grids at a much lower computational cost, and t
the composite fine grid can remove oscillatory solutio
caused by insufficient grid points.

ACKNOWLEDGMENTS

We thank Professor Shiyi Chen at Johns Hopkins Univ
sity for providing a two-dimensional LBE code. This wor
was supported by the Carver Scientific Research Initia
Grants Program at the University of Iowa.
y-

m-
@1# S. Chen and G.D. Doolen, Annu. Rev. Fluid Mech.30, 329
~1998!.

@2# X. He and L.-S. Luo, Phys. Rev. E55, R6333~1997!.
@3# X. He and L.-S. Luo, Phys. Rev. E56, 6811~1997!.
@4# X. He, L.-S. Luo, and M. Dembo, J. Comput. Phys.129, 357

~1996!.
@5# X. He and G.D. Doolen, Phys. Rev. E56, 434 ~1997!.
@6# X. He and G.D. Doolen, J. Comput. Phys.134, 306 ~1997!.
@7# N. Cao, S. Chen, S. Jin, and D. Martı´nez, Phys. Rev. E55, R21

~1997!.
@8# R. Mei and W. Shyy, J. Comput. Phys.143, 426 ~1998!.
@9# S. Succi, G. Amati, and R. Benzi, J. Stat. Phys.81, 5 ~1995!.

@10# H. Xi, G. Peng, and S.-H. Chou, Phys. Rev. E59, 6202~1999!.
@11# H. Xi, G. Peng, and S.-H. Chou, Phys. Rev. E60, 3380~1999!.
@12# O. Filippova and D. Ha¨nel, J. Comput. Phys.147, 219 ~1998!.
@13# R. Mei, L.-S. Luo, and W. Shyy, J. Comput. Phys.155, 307
~1999!.

@14# P.P. Sullivan, J.C. McWilliams, and C.-H. Moeng, Boundar
Layer Meteorol.80, 167 ~1996!.

@15# P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rev.94, 511
~1954!.

@16# J.H. Ferziger and M. Peric´, Computational Methods for Fluid
Dynamics~Springer, New York, 1999!.

@17# S. Hou, Q. Zou, S. Chen, G. Dollen, and A.C. Cogley, J. Co
put. Phys.118, 329 ~1995!.

@18# D.H. Rothman and S. Zaleski,Lattice-Gas Cellular Automata:
Simple Models of Complex Hydrodynamics~Cambridge Uni-
versity Press, New York, 1997!.

@19# Y. Lai, A1AA J. ~to be published!.
@20# U. Ghia, K.N. Ghia, and C.T. Shin, J. Comput. Phys.48, 387

~1982!.


